Active control of high-frequency vibration: optimisation using the hybrid modelling method
This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing str...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2012
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/23500/ http://irep.iium.edu.my/23500/ http://irep.iium.edu.my/23500/ http://irep.iium.edu.my/23500/1/Published-JSV-authours_personal_copy-active_control_of_high_freq.pdf |
id |
iium-23500 |
---|---|
recordtype |
eprints |
spelling |
iium-235002012-06-15T00:22:53Z http://irep.iium.edu.my/23500/ Active control of high-frequency vibration: optimisation using the hybrid modelling method Abdul Muthalif, Asan Gani Langley, Robin S TA630 Structural engineering (General) This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. Elsevier 2012-06-18 Article PeerReviewed application/pdf en http://irep.iium.edu.my/23500/1/Published-JSV-authours_personal_copy-active_control_of_high_freq.pdf Abdul Muthalif, Asan Gani and Langley, Robin S (2012) Active control of high-frequency vibration: optimisation using the hybrid modelling method. Journal of Sound and Vibration, 331 (13). pp. 2969-2983. ISSN 0022-460X http://www.sciencedirect.com/science/article/pii/S0022460X1200140X 10.1016/j.jsv.2012.02.012 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English |
topic |
TA630 Structural engineering (General) |
spellingShingle |
TA630 Structural engineering (General) Abdul Muthalif, Asan Gani Langley, Robin S Active control of high-frequency vibration: optimisation using the hybrid modelling method |
description |
This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. |
format |
Article |
author |
Abdul Muthalif, Asan Gani Langley, Robin S |
author_facet |
Abdul Muthalif, Asan Gani Langley, Robin S |
author_sort |
Abdul Muthalif, Asan Gani |
title |
Active control of high-frequency vibration: optimisation using the hybrid modelling method |
title_short |
Active control of high-frequency vibration: optimisation using the hybrid modelling method |
title_full |
Active control of high-frequency vibration: optimisation using the hybrid modelling method |
title_fullStr |
Active control of high-frequency vibration: optimisation using the hybrid modelling method |
title_full_unstemmed |
Active control of high-frequency vibration: optimisation using the hybrid modelling method |
title_sort |
active control of high-frequency vibration: optimisation using the hybrid modelling method |
publisher |
Elsevier |
publishDate |
2012 |
url |
http://irep.iium.edu.my/23500/ http://irep.iium.edu.my/23500/ http://irep.iium.edu.my/23500/ http://irep.iium.edu.my/23500/1/Published-JSV-authours_personal_copy-active_control_of_high_freq.pdf |
first_indexed |
2023-09-18T20:35:32Z |
last_indexed |
2023-09-18T20:35:32Z |
_version_ |
1777409020694364160 |