Origin of cooperative transition of antisite-Arsenic defects in Be-doped low-temperature-grown GaAs layers
A cooperative transition of antisite As (AsGa) defects in Be-doped low-temperature grown GaAs layers was studied by comparing magnetization of samples with different AsGa+ ions concentrations. With the aid of first principle calculations, the origin of cooperative transitions was shown to be due to...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2013
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/29881/ http://irep.iium.edu.my/29881/ http://irep.iium.edu.my/29881/ http://irep.iium.edu.my/29881/1/journal_of_crystal_growth.pdf |
Summary: | A cooperative transition of antisite As (AsGa) defects in Be-doped low-temperature grown GaAs layers was studied by comparing magnetization of samples with different AsGa+ ions concentrations. With the aid of first principle calculations, the origin of cooperative transitions was shown to be due to a lattice strain which results in elastic interactions among AsGa defects. A change in magnetizations is induced by large lattice distortions during transition of AsGa defects from substitutional sites to interstitial sites. The calculation of electron states of an AsGa atom with a shallow acceptor Be atom show that at the transition, an AsGa+ ion is displaced to the interstitial site and becomes a neutral atom, leading to a magnetization annihilation. |
---|