The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains
In this paper, we study the notion of the Dobrushin ergodicity coefficient for positive contractions defined on the predual M∗ of von Neumann algebra M. Moreover, in terms of this coefficient, we prove ergodic-type theorems for nonhomogeneous Markov chains on M∗.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2013
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/31766/ http://irep.iium.edu.my/31766/ http://irep.iium.edu.my/31766/ http://irep.iium.edu.my/31766/1/mf-JMAA%282013%29.pdf |
id |
iium-31766 |
---|---|
recordtype |
eprints |
spelling |
iium-317662013-09-03T18:12:00Z http://irep.iium.edu.my/31766/ The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains Mukhamedov, Farrukh QA Mathematics In this paper, we study the notion of the Dobrushin ergodicity coefficient for positive contractions defined on the predual M∗ of von Neumann algebra M. Moreover, in terms of this coefficient, we prove ergodic-type theorems for nonhomogeneous Markov chains on M∗. Elsevier 2013-12 Article PeerReviewed application/pdf en http://irep.iium.edu.my/31766/1/mf-JMAA%282013%29.pdf Mukhamedov, Farrukh (2013) The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains. Journal of Mathematical Analysis and Applications, 408 (1). pp. 364-373. ISSN 0022-247X http://dx.doi.org/10.1016/j.jmaa.2013.06.022 doi:10.1016/j.jmaa.2013.06.022 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Mukhamedov, Farrukh The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains |
description |
In this paper, we study the notion of the Dobrushin ergodicity coefficient for positive
contractions defined on the predual M∗ of von Neumann algebra M. Moreover, in terms
of this coefficient, we prove ergodic-type theorems for nonhomogeneous Markov chains
on M∗. |
format |
Article |
author |
Mukhamedov, Farrukh |
author_facet |
Mukhamedov, Farrukh |
author_sort |
Mukhamedov, Farrukh |
title |
The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains |
title_short |
The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains |
title_full |
The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains |
title_fullStr |
The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains |
title_full_unstemmed |
The Dobrushin ergodicity coefficient and the ergodicity of noncommutative Markov chains |
title_sort |
dobrushin ergodicity coefficient and the ergodicity of noncommutative markov chains |
publisher |
Elsevier |
publishDate |
2013 |
url |
http://irep.iium.edu.my/31766/ http://irep.iium.edu.my/31766/ http://irep.iium.edu.my/31766/ http://irep.iium.edu.my/31766/1/mf-JMAA%282013%29.pdf |
first_indexed |
2023-09-18T20:45:55Z |
last_indexed |
2023-09-18T20:45:55Z |
_version_ |
1777409673541976064 |