On quantum Markov chains on Cayley tree III: Ising model

In this paper, we consider the classical Ising model on the Cayley tree of order k (k ≥ 2), and show the existence of the phase transition in the following sense: there exists two quantum Markov states which are not quasi-equivalent. It turns out that the found critical temperature coincides with...

Full description

Bibliographic Details
Main Authors: Accardi, Luigi, Mukhamedov, Farrukh, Saburov, Mansoor
Format: Article
Language:English
English
Published: Springer 2014
Subjects:
Online Access:http://irep.iium.edu.my/38234/
http://irep.iium.edu.my/38234/
http://irep.iium.edu.my/38234/
http://irep.iium.edu.my/38234/1/Farrukh.pdf
http://irep.iium.edu.my/38234/4/WOS_Q2.pdf
id iium-38234
recordtype eprints
spelling iium-382342014-11-27T08:23:36Z http://irep.iium.edu.my/38234/ On quantum Markov chains on Cayley tree III: Ising model Accardi, Luigi Mukhamedov, Farrukh Saburov, Mansoor QA Mathematics QC Physics In this paper, we consider the classical Ising model on the Cayley tree of order k (k ≥ 2), and show the existence of the phase transition in the following sense: there exists two quantum Markov states which are not quasi-equivalent. It turns out that the found critical temperature coincides with the classical critical temperature. Springer 2014 Article PeerReviewed application/pdf en http://irep.iium.edu.my/38234/1/Farrukh.pdf application/pdf en http://irep.iium.edu.my/38234/4/WOS_Q2.pdf Accardi, Luigi and Mukhamedov, Farrukh and Saburov, Mansoor (2014) On quantum Markov chains on Cayley tree III: Ising model. Journal of Statistical Physics, 157 (2). pp. 303-329. ISSN 0022-4715 http://link.springer.com/article/10.1007%2Fs10955-014-1083-y 10.1007/s10955-014-1083-y
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
English
topic QA Mathematics
QC Physics
spellingShingle QA Mathematics
QC Physics
Accardi, Luigi
Mukhamedov, Farrukh
Saburov, Mansoor
On quantum Markov chains on Cayley tree III: Ising model
description In this paper, we consider the classical Ising model on the Cayley tree of order k (k ≥ 2), and show the existence of the phase transition in the following sense: there exists two quantum Markov states which are not quasi-equivalent. It turns out that the found critical temperature coincides with the classical critical temperature.
format Article
author Accardi, Luigi
Mukhamedov, Farrukh
Saburov, Mansoor
author_facet Accardi, Luigi
Mukhamedov, Farrukh
Saburov, Mansoor
author_sort Accardi, Luigi
title On quantum Markov chains on Cayley tree III: Ising model
title_short On quantum Markov chains on Cayley tree III: Ising model
title_full On quantum Markov chains on Cayley tree III: Ising model
title_fullStr On quantum Markov chains on Cayley tree III: Ising model
title_full_unstemmed On quantum Markov chains on Cayley tree III: Ising model
title_sort on quantum markov chains on cayley tree iii: ising model
publisher Springer
publishDate 2014
url http://irep.iium.edu.my/38234/
http://irep.iium.edu.my/38234/
http://irep.iium.edu.my/38234/
http://irep.iium.edu.my/38234/1/Farrukh.pdf
http://irep.iium.edu.my/38234/4/WOS_Q2.pdf
first_indexed 2023-09-18T20:54:54Z
last_indexed 2023-09-18T20:54:54Z
_version_ 1777410239378751488