Online sequential extreme learning machine algorithm based human activity recognition using inertial data
Human activity recognition (HAR) is the basis for many real world applications concerning health care, sports and gaming industry. Different methodological perspectives have been proposed to perform HAR. One appealing methodology is to take an advantage of data that are collected from inertial senso...
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English English |
Published: |
IEEE
2015
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/44861/ http://irep.iium.edu.my/44861/ http://irep.iium.edu.my/44861/ http://irep.iium.edu.my/44861/4/44861-Online_sequential_extreme_learning_machine_algorithm_based_human_activity_recognition_using_inertial_data_Full_article.pdf http://irep.iium.edu.my/44861/7/ASCC-organizer.pdf |
id |
iium-44861 |
---|---|
recordtype |
eprints |
spelling |
iium-448612016-05-24T01:54:31Z http://irep.iium.edu.my/44861/ Online sequential extreme learning machine algorithm based human activity recognition using inertial data Al Jeroudi, Yazan Ali, M. A. Latief, Marsad Akmeliawati, Rini TK Electrical engineering. Electronics Nuclear engineering Human activity recognition (HAR) is the basis for many real world applications concerning health care, sports and gaming industry. Different methodological perspectives have been proposed to perform HAR. One appealing methodology is to take an advantage of data that are collected from inertial sensors which are embedded in the individual's smartphone. These data contain rich amount of information about daily activities of the user. However, there is no straightforward analytical mapping between a performed activity and its corresponding data. Besides, online training for the classification in these types of applications is a concern. This paper aims at classifying human activities based on the inertial data collected from a user's smartphone. An Online Sequential Extreme Learning Machine (OSELM) method is implemented to train a single hidden layer feed-forward network (SLFN). Experimental results with an average accuracy of 82.05% are achieved. IEEE 2015 Conference or Workshop Item PeerReviewed application/pdf en http://irep.iium.edu.my/44861/4/44861-Online_sequential_extreme_learning_machine_algorithm_based_human_activity_recognition_using_inertial_data_Full_article.pdf application/pdf en http://irep.iium.edu.my/44861/7/ASCC-organizer.pdf Al Jeroudi, Yazan and Ali, M. A. and Latief, Marsad and Akmeliawati, Rini (2015) Online sequential extreme learning machine algorithm based human activity recognition using inertial data. In: 2015 10th Asian Control Conference (ASCC 2015), 31st May- 3rd June 2015, Kota Kinabalu, Sabah. http://dx.doi.org/10.1109/ASCC.2015.7244597 10.1109/ASCC.2015.7244597 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English English |
topic |
TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
TK Electrical engineering. Electronics Nuclear engineering Al Jeroudi, Yazan Ali, M. A. Latief, Marsad Akmeliawati, Rini Online sequential extreme learning machine algorithm based human activity recognition using inertial data |
description |
Human activity recognition (HAR) is the basis for many real world applications concerning health care, sports and gaming industry. Different methodological perspectives have been proposed to perform HAR. One appealing methodology is to take an advantage of data that are collected from inertial sensors which are embedded in the individual's smartphone. These data contain rich amount of information about daily activities of the user. However, there is no straightforward analytical mapping between a performed activity and its corresponding data. Besides, online training for the classification in these types of applications is a concern. This paper aims at classifying human activities based on the inertial data collected from a user's smartphone. An Online Sequential Extreme Learning Machine (OSELM) method is implemented to train a single hidden layer feed-forward network (SLFN). Experimental results with an average accuracy of 82.05% are achieved. |
format |
Conference or Workshop Item |
author |
Al Jeroudi, Yazan Ali, M. A. Latief, Marsad Akmeliawati, Rini |
author_facet |
Al Jeroudi, Yazan Ali, M. A. Latief, Marsad Akmeliawati, Rini |
author_sort |
Al Jeroudi, Yazan |
title |
Online sequential extreme learning machine algorithm based human activity recognition using inertial data |
title_short |
Online sequential extreme learning machine algorithm based human activity recognition using inertial data |
title_full |
Online sequential extreme learning machine algorithm based human activity recognition using inertial data |
title_fullStr |
Online sequential extreme learning machine algorithm based human activity recognition using inertial data |
title_full_unstemmed |
Online sequential extreme learning machine algorithm based human activity recognition using inertial data |
title_sort |
online sequential extreme learning machine algorithm based human activity recognition using inertial data |
publisher |
IEEE |
publishDate |
2015 |
url |
http://irep.iium.edu.my/44861/ http://irep.iium.edu.my/44861/ http://irep.iium.edu.my/44861/ http://irep.iium.edu.my/44861/4/44861-Online_sequential_extreme_learning_machine_algorithm_based_human_activity_recognition_using_inertial_data_Full_article.pdf http://irep.iium.edu.my/44861/7/ASCC-organizer.pdf |
first_indexed |
2023-09-18T21:03:47Z |
last_indexed |
2023-09-18T21:03:47Z |
_version_ |
1777410798155464704 |