Nonhomogeneous poisson nonlinear transformations on countable infinite set

In this paper, we construct the family of nonhomogeneous Poisson quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We sho...

Full description

Bibliographic Details
Main Authors: Hamzah, Nur Zatul Akmar, Ganikhodjaev, Nasir
Format: Article
Language:English
English
Published: Institute Mathematical Sciences, Universiti Putra Malaysia 2016
Subjects:
Online Access:http://irep.iium.edu.my/50618/
http://irep.iium.edu.my/50618/
http://irep.iium.edu.my/50618/1/50618_-_Nonhomogeneous_poisson_nonlinear_transformations_on_countable_infinite_set.pdf
http://irep.iium.edu.my/50618/4/50618-Nonhomogeneous%20poisson%20nonlinear%20transformations%20on%20countable%20infinite%20set_SCOPUS.pdf
id iium-50618
recordtype eprints
spelling iium-506182017-03-21T10:36:57Z http://irep.iium.edu.my/50618/ Nonhomogeneous poisson nonlinear transformations on countable infinite set Hamzah, Nur Zatul Akmar Ganikhodjaev, Nasir QA Mathematics In this paper, we construct the family of nonhomogeneous Poisson quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that nonhomogeneous Poisson quadratic stochastic operators are regular transformations Institute Mathematical Sciences, Universiti Putra Malaysia 2016-02 Article PeerReviewed application/pdf en http://irep.iium.edu.my/50618/1/50618_-_Nonhomogeneous_poisson_nonlinear_transformations_on_countable_infinite_set.pdf application/pdf en http://irep.iium.edu.my/50618/4/50618-Nonhomogeneous%20poisson%20nonlinear%20transformations%20on%20countable%20infinite%20set_SCOPUS.pdf Hamzah, Nur Zatul Akmar and Ganikhodjaev, Nasir (2016) Nonhomogeneous poisson nonlinear transformations on countable infinite set. Malaysian Journal of Mathematical Sciences, 10 (Special Issue). pp. 143-155. ISSN 1823-8343 E-ISSN 2289-750X http://einspem.upm.edu.my/journal
repository_type Digital Repository
institution_category Local University
institution International Islamic University Malaysia
building IIUM Repository
collection Online Access
language English
English
topic QA Mathematics
spellingShingle QA Mathematics
Hamzah, Nur Zatul Akmar
Ganikhodjaev, Nasir
Nonhomogeneous poisson nonlinear transformations on countable infinite set
description In this paper, we construct the family of nonhomogeneous Poisson quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that nonhomogeneous Poisson quadratic stochastic operators are regular transformations
format Article
author Hamzah, Nur Zatul Akmar
Ganikhodjaev, Nasir
author_facet Hamzah, Nur Zatul Akmar
Ganikhodjaev, Nasir
author_sort Hamzah, Nur Zatul Akmar
title Nonhomogeneous poisson nonlinear transformations on countable infinite set
title_short Nonhomogeneous poisson nonlinear transformations on countable infinite set
title_full Nonhomogeneous poisson nonlinear transformations on countable infinite set
title_fullStr Nonhomogeneous poisson nonlinear transformations on countable infinite set
title_full_unstemmed Nonhomogeneous poisson nonlinear transformations on countable infinite set
title_sort nonhomogeneous poisson nonlinear transformations on countable infinite set
publisher Institute Mathematical Sciences, Universiti Putra Malaysia
publishDate 2016
url http://irep.iium.edu.my/50618/
http://irep.iium.edu.my/50618/
http://irep.iium.edu.my/50618/1/50618_-_Nonhomogeneous_poisson_nonlinear_transformations_on_countable_infinite_set.pdf
http://irep.iium.edu.my/50618/4/50618-Nonhomogeneous%20poisson%20nonlinear%20transformations%20on%20countable%20infinite%20set_SCOPUS.pdf
first_indexed 2023-09-18T21:11:33Z
last_indexed 2023-09-18T21:11:33Z
_version_ 1777411286192095232