Optimal model order selection for Transient Error Autoregressive Moving Average (TERA) MRI reconstruction method

An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable...

Full description

Bibliographic Details
Main Authors: Aibinu, Abiodun Musa, Najeeb, Athaur Rahman, Salami, Momoh Jimoh Emiyoka, Shafie, Amir Akramin
Format: Conference or Workshop Item
Language:English
Published: 2008
Subjects:
Online Access:http://irep.iium.edu.my/5452/
http://irep.iium.edu.my/5452/1/Optimal_Model_Order_Selection_for_Transient_Error.pdf
Description
Summary:An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.