Prototype development of light weight aluminium matrix composite automotive brake rotor
The global demand for light weight energy savings and high performance characteristic material has translated to the emergence of advance composite materials. Presently, cast iron is used for brake rotor production, however, due to higher density resulting more fuel consumption and emission of carbo...
Main Authors: | , , , , , |
---|---|
Format: | Monograph |
Language: | English English |
Published: |
2017
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/55186/ http://irep.iium.edu.my/55186/1/Research%20Profil%20PRGS%20%2012-002-0002%20Maleque.pdf http://irep.iium.edu.my/55186/2/5.%20Borang%20PRGS%20-%20P3%20%28R%29%20Pindaan%202015%20%28Borang%20Laporan%20Akhir%29-2.pdf |
id |
iium-55186 |
---|---|
recordtype |
eprints |
spelling |
iium-551862018-10-27T15:24:59Z http://irep.iium.edu.my/55186/ Prototype development of light weight aluminium matrix composite automotive brake rotor Maleque, Md. Abdul Wan Yusoff, Wan Ahmad Yusmawiza Samat, Noorasikin Ali, Mohammad Yeakub Rahman, Md Mustafizur Adetayo A., Adebisi T173.2 Technological change TA401 Materials of engineering and construction TN600 Metallurgy The global demand for light weight energy savings and high performance characteristic material has translated to the emergence of advance composite materials. Presently, cast iron is used for brake rotor production, however, due to higher density resulting more fuel consumption and emission of carbon dioxide making the environment unsafe. The recyclability of the cast iron is advantageous but the evolution of CO2 during re-melting has to be taken into consideration. In this prototype project, lightweight aluminium matrix composite (with the reinforcement of SiC) brake rotor was fabricated using simple and cost effective stir casting method. Actual car test was performed using Proton car with new developed prototype brake rotor. The wear performance test was conducted using universal wear and friction testing machine. The thermal distribution analysis was performed using both finite element (FE) simulation and actual car brake rotor test rig. The outcome of the new composite brake rotor achieved ~50% weight reduction and a corresponding energy savings of 19% when compared with cast iron brake rotor. The actual car test result showed uniform distribution of heat with minimum hot spot generation which revealed stable thermal performance due to better thermal diffusivity and coefficient of thermal expansion of the composite. Moreover, the wear performance exhibits superior resistance as a result of the formation of oxide layers during braking contact which serves as lubricant, thus prolonging service life of the new light weight composite brake rotor. 2017 Monograph NonPeerReviewed application/pdf en http://irep.iium.edu.my/55186/1/Research%20Profil%20PRGS%20%2012-002-0002%20Maleque.pdf application/pdf en http://irep.iium.edu.my/55186/2/5.%20Borang%20PRGS%20-%20P3%20%28R%29%20Pindaan%202015%20%28Borang%20Laporan%20Akhir%29-2.pdf Maleque, Md. Abdul and Wan Yusoff, Wan Ahmad Yusmawiza and Samat, Noorasikin and Ali, Mohammad Yeakub and Rahman, Md Mustafizur and Adetayo A., Adebisi (2017) Prototype development of light weight aluminium matrix composite automotive brake rotor. Project Report. UNSPECIFIED. (Unpublished) |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English English |
topic |
T173.2 Technological change TA401 Materials of engineering and construction TN600 Metallurgy |
spellingShingle |
T173.2 Technological change TA401 Materials of engineering and construction TN600 Metallurgy Maleque, Md. Abdul Wan Yusoff, Wan Ahmad Yusmawiza Samat, Noorasikin Ali, Mohammad Yeakub Rahman, Md Mustafizur Adetayo A., Adebisi Prototype development of light weight aluminium matrix composite automotive brake rotor |
description |
The global demand for light weight energy savings and high performance characteristic material has translated to the emergence of advance composite materials. Presently, cast iron is used for brake rotor production, however, due to higher density resulting more fuel consumption and emission of carbon dioxide making the environment unsafe. The recyclability of the cast iron is advantageous but the evolution of CO2 during re-melting has to be taken into consideration. In this prototype project, lightweight aluminium matrix composite (with the reinforcement of SiC) brake rotor was fabricated using simple and cost effective stir casting method. Actual car test was performed using Proton car with new developed prototype brake rotor. The wear performance test was conducted using universal wear and friction testing machine. The thermal distribution analysis was performed using both finite element (FE) simulation and actual car brake rotor test rig. The outcome of the new composite brake rotor achieved ~50% weight reduction and a corresponding energy savings of 19% when compared with cast iron brake rotor. The actual car test result showed uniform distribution of heat with minimum hot spot generation which revealed stable thermal performance due to better thermal diffusivity and coefficient of thermal expansion of the composite. Moreover, the wear performance exhibits superior resistance as a result of the formation of oxide layers during braking contact which serves as lubricant, thus prolonging service life of the new light weight composite brake rotor. |
format |
Monograph |
author |
Maleque, Md. Abdul Wan Yusoff, Wan Ahmad Yusmawiza Samat, Noorasikin Ali, Mohammad Yeakub Rahman, Md Mustafizur Adetayo A., Adebisi |
author_facet |
Maleque, Md. Abdul Wan Yusoff, Wan Ahmad Yusmawiza Samat, Noorasikin Ali, Mohammad Yeakub Rahman, Md Mustafizur Adetayo A., Adebisi |
author_sort |
Maleque, Md. Abdul |
title |
Prototype development of light weight aluminium matrix composite automotive brake rotor |
title_short |
Prototype development of light weight aluminium matrix composite automotive brake rotor |
title_full |
Prototype development of light weight aluminium matrix composite automotive brake rotor |
title_fullStr |
Prototype development of light weight aluminium matrix composite automotive brake rotor |
title_full_unstemmed |
Prototype development of light weight aluminium matrix composite automotive brake rotor |
title_sort |
prototype development of light weight aluminium matrix composite automotive brake rotor |
publishDate |
2017 |
url |
http://irep.iium.edu.my/55186/ http://irep.iium.edu.my/55186/1/Research%20Profil%20PRGS%20%2012-002-0002%20Maleque.pdf http://irep.iium.edu.my/55186/2/5.%20Borang%20PRGS%20-%20P3%20%28R%29%20Pindaan%202015%20%28Borang%20Laporan%20Akhir%29-2.pdf |
first_indexed |
2023-09-18T21:18:01Z |
last_indexed |
2023-09-18T21:18:01Z |
_version_ |
1777411693060554752 |