Hardware prototyping of an efficient encryption engine
An approach to develop the FPGA of a flexible key RSA encryption engine that can be used as a standard device in the secured communication system is presented. The VHDL modeling of this RSA encryption engine has the unique characteristics of supporting multiple key sizes, thus can easily be fit...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
World Academy of Science Engineering and Technology
2010
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/5971/ http://irep.iium.edu.my/5971/ http://irep.iium.edu.my/5971/1/Hardware_Prototyping_2010.pdf |
Summary: | An approach to develop the FPGA of a flexible key
RSA encryption engine that can be used as a standard device in the
secured communication system is presented. The VHDL modeling of
this RSA encryption engine has the unique characteristics of
supporting multiple key sizes, thus can easily be fit into the systems
that require different levels of security. A simple nested loop addition
and subtraction have been used in order to implement the RSA
operation. This has made the processing time faster and used
comparatively smaller amount of space in the FPGA. The hardware
design is targeted on Altera STRATIX II device and determined that
the flexible key RSA encryption engine can be best suited in the
device named EP2S30F484C3. The RSA encryption implementation
has made use of 13,779 units of logic elements and achieved a clock
frequency of 17.77MHz. It has been verified that this RSA
encryption engine can perform 32-bit, 256-bit and 1024-bit
encryption operation in less than 41.585us, 531.515us and 790.61us
respectively. |
---|