Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators
A systematic approach using Taguchi method is proposed for optimization of complementary metal oxide semiconductor microelectromechanical system surface acoustic wave (SAW) resonators. The aim of the present method is to enhance the performance of SAW devices in terms of electromechanical coupling c...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English English English |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2019
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/71505/ http://irep.iium.edu.my/71505/ http://irep.iium.edu.my/71505/ http://irep.iium.edu.my/71505/1/71505_Application%20of%20Taguchi%20Signal_article.pdf http://irep.iium.edu.my/71505/2/71505_Application%20of%20Taguchi%20Signal_wos.pdf http://irep.iium.edu.my/71505/3/71505_Application%20of%20Taguchi%20Signal_scopus.pdf |
id |
iium-71505 |
---|---|
recordtype |
eprints |
spelling |
iium-715052019-07-12T03:35:49Z http://irep.iium.edu.my/71505/ Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators Md Ralib @ Md Raghib, Aliza 'Aini Nordin, Anis Nurashikin T Technology (General) TK Electrical engineering. Electronics Nuclear engineering TK5101 Telecommunication. Including telegraphy, radio, radar, television A systematic approach using Taguchi method is proposed for optimization of complementary metal oxide semiconductor microelectromechanical system surface acoustic wave (SAW) resonators. The aim of the present method is to enhance the performance of SAW devices in terms of electromechanical coupling coefficient while reducing the design and development cost. Controllable factors such as a number of transducers, N t , the distance between input and output transducers, L c , and the thickness of the piezoelectric materials, T c have been optimized. L 27 (3 13 ) orthogonal array was chosen to conduct 27 simulations with three level parameters. Time and cost efficient 2D finite element simulations were done using COMSOL Multiphysics TM for two-step analysis Eigen frequency and frequency domain analysis. The orthogonal array, signal to noise ratio, and analysis of variance (ANOVA) were calculated to determine the best settings of the design parameters. The maximum electromechanical coupling coefficient is achieved at the optimal condition of N t = 6; L c =1.6 μm; T c =2.5 μ m with increased performance by 4.68% for κ 2 and 9.62% for G 12 (f) compared to the initial conditions. The interaction between pairs of factors has also been investigated. The Taguchi method reveals that both N t and L c , and the interaction of N t × L c plays crucial roles in optimizing the electroacoustic conversion of the SAW devices. Hence, the experiment shows that the performance of the SAW device has been successfully optimized. Institute of Electrical and Electronics Engineers Inc. 2019 Article PeerReviewed application/pdf en http://irep.iium.edu.my/71505/1/71505_Application%20of%20Taguchi%20Signal_article.pdf application/pdf en http://irep.iium.edu.my/71505/2/71505_Application%20of%20Taguchi%20Signal_wos.pdf application/pdf en http://irep.iium.edu.my/71505/3/71505_Application%20of%20Taguchi%20Signal_scopus.pdf Md Ralib @ Md Raghib, Aliza 'Aini and Nordin, Anis Nurashikin (2019) Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators. IEEE Access, 7. pp. 27993-28000. ISSN 2169-3536 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8651565 10.1109/ACCESS.2019.2900590 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
International Islamic University Malaysia |
building |
IIUM Repository |
collection |
Online Access |
language |
English English English |
topic |
T Technology (General) TK Electrical engineering. Electronics Nuclear engineering TK5101 Telecommunication. Including telegraphy, radio, radar, television |
spellingShingle |
T Technology (General) TK Electrical engineering. Electronics Nuclear engineering TK5101 Telecommunication. Including telegraphy, radio, radar, television Md Ralib @ Md Raghib, Aliza 'Aini Nordin, Anis Nurashikin Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators |
description |
A systematic approach using Taguchi method is proposed for optimization of complementary metal oxide semiconductor microelectromechanical system surface acoustic wave (SAW) resonators. The aim of the present method is to enhance the performance of SAW devices in terms of electromechanical coupling coefficient while reducing the design and development cost. Controllable factors such as a number of transducers, N t , the distance between input and output transducers, L c , and the thickness of the piezoelectric materials, T c have been optimized. L 27 (3 13 ) orthogonal array was chosen to conduct 27 simulations with three level parameters. Time and cost efficient 2D finite element simulations were done using COMSOL Multiphysics TM for two-step analysis Eigen frequency and frequency domain analysis. The orthogonal array, signal to noise ratio, and analysis of variance (ANOVA) were calculated to determine the best settings of the design parameters. The maximum electromechanical coupling coefficient is achieved at the optimal condition of N t = 6; L c =1.6 μm; T c =2.5 μ m with increased performance by 4.68% for κ 2 and 9.62% for G 12 (f) compared to the initial conditions. The interaction between pairs of factors has also been investigated. The Taguchi method reveals that both N t and L c , and the interaction of N t × L c plays crucial roles in optimizing the electroacoustic conversion of the SAW devices. Hence, the experiment shows that the performance of the SAW device has been successfully optimized. |
format |
Article |
author |
Md Ralib @ Md Raghib, Aliza 'Aini Nordin, Anis Nurashikin |
author_facet |
Md Ralib @ Md Raghib, Aliza 'Aini Nordin, Anis Nurashikin |
author_sort |
Md Ralib @ Md Raghib, Aliza 'Aini |
title |
Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators |
title_short |
Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators |
title_full |
Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators |
title_fullStr |
Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators |
title_full_unstemmed |
Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators |
title_sort |
application of taguchi signal to noise ratio design method to zno thin film cmos saw resonators |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
publishDate |
2019 |
url |
http://irep.iium.edu.my/71505/ http://irep.iium.edu.my/71505/ http://irep.iium.edu.my/71505/ http://irep.iium.edu.my/71505/1/71505_Application%20of%20Taguchi%20Signal_article.pdf http://irep.iium.edu.my/71505/2/71505_Application%20of%20Taguchi%20Signal_wos.pdf http://irep.iium.edu.my/71505/3/71505_Application%20of%20Taguchi%20Signal_scopus.pdf |
first_indexed |
2023-09-18T21:41:23Z |
last_indexed |
2023-09-18T21:41:23Z |
_version_ |
1777413163553128448 |