Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius

Quantum statistical properties of interacting optical fields in Kerr nonlinear couplers may be regarded as one of the most fundamental problems yet to be solved in quantum optics. As an analytical solution to this system is not always possible, a semi-analytic or direct numerical solution must be em...

Full description

Bibliographic Details
Main Author: Julius, Rafael
Format: Thesis
Language:English
Published: 2014
Online Access:http://ir.uitm.edu.my/id/eprint/16431/
http://ir.uitm.edu.my/id/eprint/16431/1/TM_RAFAEL%20JULIUS%20AS%2014_5.pdf
id uitm-16431
recordtype eprints
spelling uitm-164312019-02-21T02:17:22Z http://ir.uitm.edu.my/id/eprint/16431/ Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius Julius, Rafael Quantum statistical properties of interacting optical fields in Kerr nonlinear couplers may be regarded as one of the most fundamental problems yet to be solved in quantum optics. As an analytical solution to this system is not always possible, a semi-analytic or direct numerical solution must be employed in order to obtain a more complete description of their evolution. This study investigates the quantum properties of four-mode couplers composed of two and four Kerr nonlinear waveguides, both with and without cavity set up via phase space representation. In these systems, the electromagnetic fields are described by their Hamiltonians, while the time-evolution of the systems are described by the Von-Neumann equation. Following standard techniques, the master equations for the density matrices of the systems are obtained and further converted to the corresponding classical Fokker- Planck equations using both positive P and Wigner representations. The corresponding set of Langevin Stochastic equations is then obtained from the Fokker-Planck equations by means of Ito rules. Finally, the systems are integrated numerically and averaged over many trajectories to get the relevant information. The effects of self-action nonlinearity, cross-action coupling and the initial energy of the coherent light on the evolution of the field quadrature variances are investigated. Furthermore, the influences of multimode interaction on the dynamics of the squeezed states are discussed. In this research, we show that the system may produce squeezed states in both quadrature variances for all calculated parameters. The multimode two channel model can provide better squeezing in contrast to the conventional device. The amplitude oscillation of maximal squeezing may be amplified by manipulation of the initial state of the coherent light in the first mode, and the range may be extended through multimode interaction. When the model is contained in a cavity, the system is able to generate better amplitude oscillations and squeezing range with leaf-revival-collapse-like behaviour; with the whole oscillation able to evolute below the standard quantum limit Regular photon transition and self trapping effects of the interacting modes in the four channels model are simulated, and squeezing is predicted for various initial intensities of the coherent field and nonlinear coupling parameter g. The cavity setup caused the system to undergo fluctuation amplification and the potential for different types of squeezing to be generated is observed. Depending on how we choose the interaction parameter values, the system may generate better squeezing in comparison to the cavity-less model. 2014 Thesis NonPeerReviewed text en http://ir.uitm.edu.my/id/eprint/16431/1/TM_RAFAEL%20JULIUS%20AS%2014_5.pdf Julius, Rafael (2014) Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius. Masters thesis, Universiti Teknologi MARA.
repository_type Digital Repository
institution_category Local University
institution Universiti Teknologi MARA
building UiTM Institutional Repository
collection Online Access
language English
description Quantum statistical properties of interacting optical fields in Kerr nonlinear couplers may be regarded as one of the most fundamental problems yet to be solved in quantum optics. As an analytical solution to this system is not always possible, a semi-analytic or direct numerical solution must be employed in order to obtain a more complete description of their evolution. This study investigates the quantum properties of four-mode couplers composed of two and four Kerr nonlinear waveguides, both with and without cavity set up via phase space representation. In these systems, the electromagnetic fields are described by their Hamiltonians, while the time-evolution of the systems are described by the Von-Neumann equation. Following standard techniques, the master equations for the density matrices of the systems are obtained and further converted to the corresponding classical Fokker- Planck equations using both positive P and Wigner representations. The corresponding set of Langevin Stochastic equations is then obtained from the Fokker-Planck equations by means of Ito rules. Finally, the systems are integrated numerically and averaged over many trajectories to get the relevant information. The effects of self-action nonlinearity, cross-action coupling and the initial energy of the coherent light on the evolution of the field quadrature variances are investigated. Furthermore, the influences of multimode interaction on the dynamics of the squeezed states are discussed. In this research, we show that the system may produce squeezed states in both quadrature variances for all calculated parameters. The multimode two channel model can provide better squeezing in contrast to the conventional device. The amplitude oscillation of maximal squeezing may be amplified by manipulation of the initial state of the coherent light in the first mode, and the range may be extended through multimode interaction. When the model is contained in a cavity, the system is able to generate better amplitude oscillations and squeezing range with leaf-revival-collapse-like behaviour; with the whole oscillation able to evolute below the standard quantum limit Regular photon transition and self trapping effects of the interacting modes in the four channels model are simulated, and squeezing is predicted for various initial intensities of the coherent field and nonlinear coupling parameter g. The cavity setup caused the system to undergo fluctuation amplification and the potential for different types of squeezing to be generated is observed. Depending on how we choose the interaction parameter values, the system may generate better squeezing in comparison to the cavity-less model.
format Thesis
author Julius, Rafael
spellingShingle Julius, Rafael
Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius
author_facet Julius, Rafael
author_sort Julius, Rafael
title Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius
title_short Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius
title_full Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius
title_fullStr Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius
title_full_unstemmed Quantum properties of kerr nonlinear directional couplers via phase-space representation / Rafael Julius
title_sort quantum properties of kerr nonlinear directional couplers via phase-space representation / rafael julius
publishDate 2014
url http://ir.uitm.edu.my/id/eprint/16431/
http://ir.uitm.edu.my/id/eprint/16431/1/TM_RAFAEL%20JULIUS%20AS%2014_5.pdf
first_indexed 2023-09-18T22:56:03Z
last_indexed 2023-09-18T22:56:03Z
_version_ 1777417861130616832