Missing value estimation methods for data in linear functional relationship model
Missing value problem is common when analysing quantitative data. With the rapid growth of computing capabilities, advanced methods in particular those based on maximum likelihood estimation has been suggested to best handle the missing values problem. In this paper, two modern imputing approaches n...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2017
|
Online Access: | http://journalarticle.ukm.my/10685/ http://journalarticle.ukm.my/10685/ http://journalarticle.ukm.my/10685/1/17%20Adilah%20Abdul%20Ghapor.pdf |
id |
ukm-10685 |
---|---|
recordtype |
eprints |
spelling |
ukm-106852017-09-20T09:07:28Z http://journalarticle.ukm.my/10685/ Missing value estimation methods for data in linear functional relationship model Adilah Abdul Ghapor, Yong Zulina Zubairi, A.H.M. Rahmatullah Imon, Missing value problem is common when analysing quantitative data. With the rapid growth of computing capabilities, advanced methods in particular those based on maximum likelihood estimation has been suggested to best handle the missing values problem. In this paper, two modern imputing approaches namely expectation-maximization (EM) and expectation-maximization with bootstrapping (EMB) are proposed in this paper for two kinds of linear functional relationship (LFRM) models, namely LFRM1 for full model and LFRM2 for linear functional relationship model when slope parameter is estimated using a nonparametric approach. The performance of EM and EMB are measured using mean absolute error, root-mean-square error and estimated bias. The results of the simulation study suggested that both EM and EMB methods are applicable to the LFRM with EMB algorithm outperforms the standard EM algorithm. Illustration using a practical example and a real data set is provided. Penerbit Universiti Kebangsaan Malaysia 2017-02 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/10685/1/17%20Adilah%20Abdul%20Ghapor.pdf Adilah Abdul Ghapor, and Yong Zulina Zubairi, and A.H.M. Rahmatullah Imon, (2017) Missing value estimation methods for data in linear functional relationship model. Sains Malaysiana, 46 (2). pp. 317-326. ISSN 0126-6039 http://www.ukm.my/jsm/english_journals/vol46num2_2017/contentsVol46num2_2017.html |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Kebangasaan Malaysia |
building |
UKM Institutional Repository |
collection |
Online Access |
language |
English |
description |
Missing value problem is common when analysing quantitative data. With the rapid growth of computing capabilities, advanced methods in particular those based on maximum likelihood estimation has been suggested to best handle the missing values problem. In this paper, two modern imputing approaches namely expectation-maximization (EM) and expectation-maximization with bootstrapping (EMB) are proposed in this paper for two kinds of linear functional relationship (LFRM) models, namely LFRM1 for full model and LFRM2 for linear functional relationship model when slope parameter is estimated using a nonparametric approach. The performance of EM and EMB are measured using mean absolute error, root-mean-square error and estimated bias. The results of the simulation study suggested that both EM and EMB methods are applicable to the LFRM with EMB algorithm outperforms the standard EM algorithm. Illustration using a practical example and a real data set is provided. |
format |
Article |
author |
Adilah Abdul Ghapor, Yong Zulina Zubairi, A.H.M. Rahmatullah Imon, |
spellingShingle |
Adilah Abdul Ghapor, Yong Zulina Zubairi, A.H.M. Rahmatullah Imon, Missing value estimation methods for data in linear functional relationship model |
author_facet |
Adilah Abdul Ghapor, Yong Zulina Zubairi, A.H.M. Rahmatullah Imon, |
author_sort |
Adilah Abdul Ghapor, |
title |
Missing value estimation methods for data in linear
functional relationship model |
title_short |
Missing value estimation methods for data in linear
functional relationship model |
title_full |
Missing value estimation methods for data in linear
functional relationship model |
title_fullStr |
Missing value estimation methods for data in linear
functional relationship model |
title_full_unstemmed |
Missing value estimation methods for data in linear
functional relationship model |
title_sort |
missing value estimation methods for data in linear
functional relationship model |
publisher |
Penerbit Universiti Kebangsaan Malaysia |
publishDate |
2017 |
url |
http://journalarticle.ukm.my/10685/ http://journalarticle.ukm.my/10685/ http://journalarticle.ukm.my/10685/1/17%20Adilah%20Abdul%20Ghapor.pdf |
first_indexed |
2023-09-18T19:58:12Z |
last_indexed |
2023-09-18T19:58:12Z |
_version_ |
1777406671465742336 |