Landslide factors and susceptibility mapping on natural and artificial slopes in Kundasang, Sabah

This study was carried out on the hilly topographic area in Kundasang, Sabah. This area is known to be extremely prone to landslides that occurred either naturally or by human interference to natural slopes. Aerial photographs interpretation was conducted in order to identify landslide distributions...

Full description

Bibliographic Details
Main Authors: Kamilia Sharir, Rodeano Roslee, Lee, Khai Ern, Norbert Simon
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2017
Online Access:http://journalarticle.ukm.my/11380/
http://journalarticle.ukm.my/11380/
http://journalarticle.ukm.my/11380/1/23%20Kamilia%20Sharir.pdf
Description
Summary:This study was carried out on the hilly topographic area in Kundasang, Sabah. This area is known to be extremely prone to landslides that occurred either naturally or by human interference to natural slopes. Aerial photographs interpretation was conducted in order to identify landslide distributions across three assessment years (2012, 2009 and 1984). These datasets were classified into two landslides groups based on their occurrences; natural and artificial. A total of 362 naturally occurring landslides were identified and another 133 are artificial slope landslides. Physical parameters which include lithology, slope angle, slope aspect and soil series were analyzed with each landslide group to examine the different influence of these parameters on each of the group. From the analysis, the landslide density for the natural landslide group shows that more than 35° slope angle and slope aspect facing east and southwest are prone to landslides. In terms of geological materials, high landslide density is recorded in the phyllite, shale, siltstone and sandstone lithologies group and the Pinosuk, Kepayan and Trusmadi soil series. In contrast, for the artificial slope landslide, high landslide density is observed in the 25°-35° slope angle and similar density in every slope aspect classes. The geological materials however have similar landslide density across their factors’ classes. The landslide density technique was also used to generate the landslide susceptibility maps for both landslide conditions. Validation of the maps shows acceptable accuracy of 71% and 74%, respectively, for both natural and artificial slope landslide susceptibility maps and this shows that these maps can be used for future land use planning.