Fault detection using neural network

This thesis is about the application of Artificial Neural Network (ANN) as fault detection in the chemical process plant. At the present time, the process and development in chemical plants are getting more complex and hard to control. Therefore, the needs for a system that can help to supervise and...

Full description

Bibliographic Details
Main Author: Dinie, Muhammad
Format: Undergraduates Project Papers
Language:English
Published: 2008
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/1327/
http://umpir.ump.edu.my/id/eprint/1327/1/CD_2847.pdf
id ump-1327
recordtype eprints
spelling ump-13272015-03-03T07:50:15Z http://umpir.ump.edu.my/id/eprint/1327/ Fault detection using neural network Dinie, Muhammad QA76 Computer software This thesis is about the application of Artificial Neural Network (ANN) as fault detection in the chemical process plant. At the present time, the process and development in chemical plants are getting more complex and hard to control. Therefore, the needs for a system that can help to supervise and control the process in the plant have to be accomplished in order to achieve higher performance and profitability. As the emergence of Artificial Neural Network application nowadays had help to solve problems in various fields had given a great significant effect as the system are reliable to be adapted in the chemical plant. Furthermore, this thesis will be focusing more on the application of Artificial Neural Network as fault detection scheme in term of estimator and classifier in the chemical plant. Fault detection is popular in the present time as a mechanism to detect early malfunction and abnormal process or equipment in the plant. By implementing such system, we can boost up the production and the safety level of the plant. For this thesis, the Vinyl Acetate Plant had been chosen as the case study to provide the necessary data and information to run the research. Vinyl Acetate Plant process will provides a dependable source of data and an appropriate test for alternative control and optimization strategies for continuous chemical processes. 2008-04 Undergraduates Project Papers NonPeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/1327/1/CD_2847.pdf Dinie, Muhammad (2008) Fault detection using neural network. Faculty of Chemical & Natural Resources Engineering , University Malaysia Pahang.
repository_type Digital Repository
institution_category Local University
institution Universiti Malaysia Pahang
building UMP Institutional Repository
collection Online Access
language English
topic QA76 Computer software
spellingShingle QA76 Computer software
Dinie, Muhammad
Fault detection using neural network
description This thesis is about the application of Artificial Neural Network (ANN) as fault detection in the chemical process plant. At the present time, the process and development in chemical plants are getting more complex and hard to control. Therefore, the needs for a system that can help to supervise and control the process in the plant have to be accomplished in order to achieve higher performance and profitability. As the emergence of Artificial Neural Network application nowadays had help to solve problems in various fields had given a great significant effect as the system are reliable to be adapted in the chemical plant. Furthermore, this thesis will be focusing more on the application of Artificial Neural Network as fault detection scheme in term of estimator and classifier in the chemical plant. Fault detection is popular in the present time as a mechanism to detect early malfunction and abnormal process or equipment in the plant. By implementing such system, we can boost up the production and the safety level of the plant. For this thesis, the Vinyl Acetate Plant had been chosen as the case study to provide the necessary data and information to run the research. Vinyl Acetate Plant process will provides a dependable source of data and an appropriate test for alternative control and optimization strategies for continuous chemical processes.
format Undergraduates Project Papers
author Dinie, Muhammad
author_facet Dinie, Muhammad
author_sort Dinie, Muhammad
title Fault detection using neural network
title_short Fault detection using neural network
title_full Fault detection using neural network
title_fullStr Fault detection using neural network
title_full_unstemmed Fault detection using neural network
title_sort fault detection using neural network
publishDate 2008
url http://umpir.ump.edu.my/id/eprint/1327/
http://umpir.ump.edu.my/id/eprint/1327/1/CD_2847.pdf
first_indexed 2023-09-18T21:54:22Z
last_indexed 2023-09-18T21:54:22Z
_version_ 1777413979954479104