Hierarchical nanorod-based TiO2 microspheres for superior electrochemical energy storage
Nanorod-based rutile TiO2 microspheres composed of numerous single-crystalline nanorodsare successfully fabricated by hydrothermal treatment of peroxo titanic acid in acidic solution. The formation of highly oriented nanorod-based microspheres can be explained in view of crystal growth under the coo...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier B.V.
2018
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/22945/ http://umpir.ump.edu.my/id/eprint/22945/ http://umpir.ump.edu.my/id/eprint/22945/ http://umpir.ump.edu.my/id/eprint/22945/1/Hierarchical%20nanorod-based%20TiO2%20microspheres%20for%20superior%20electrochemical%20energy%20storage.pdf |
Summary: | Nanorod-based rutile TiO2 microspheres composed of numerous single-crystalline nanorodsare successfully fabricated by hydrothermal treatment of peroxo titanic acid in acidic solution. The formation of highly oriented nanorod-based microspheres can be explained in view of crystal growth under the coordination chemistry rule, followed by particle attachment and coalescence. As anodes for Li-ion batteries, the TiO2 microsphere electrodes show enhanced rate performance, deliver a high reversible specific capacity of 180 mAh g−1 at 0.2 C (33.6 mA g−1) and 85.6 mAh g−1 at an extremely high rate of 50 C with an outstanding retention of 47.5%. These remarkable electrode properties are attributed to the efficient electron-transport by the hierarchical conductive pathway which promoted electronic conductivity and the shortened Li+ diffusion length resulting from the ultrafine nanorod structure. |
---|