Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis
Reperfusion after ischaemic stroke is risky as it can result in the formation of brain oedema and brain tissue swelling, which subsequently leads to brain herniation. Brain herniation is an undesirable condition that may affect brain functionality and fatality. A mathematical model based on poroelas...
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
IEEE
2019
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/24567/ http://umpir.ump.edu.my/id/eprint/24567/ http://umpir.ump.edu.my/id/eprint/24567/13/Effects%20of%20brain%20tissue%20mechanical%20and%20fluid1.pdf |
id |
ump-24567 |
---|---|
recordtype |
eprints |
spelling |
ump-245672019-10-18T01:46:48Z http://umpir.ump.edu.my/id/eprint/24567/ Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis Mohd Jamil Mohamed, Mokhtarudin Shabudin, Abbas Payne, Stephen J. TJ Mechanical engineering and machinery Reperfusion after ischaemic stroke is risky as it can result in the formation of brain oedema and brain tissue swelling, which subsequently leads to brain herniation. Brain herniation is an undesirable condition that may affect brain functionality and fatality. A mathematical model based on poroelastic model has been previously developed to describe brain oedema formation. In that model, the brain tissue is assumed as a homogeneous isotropic material. In this paper, the effects of the brain mechanical and fluid transport properties on brain oedema progression are investigated by solving the model in a realistic brain geometry using finite element scheme. Four model parameters, namely brain tissue Young's modulus, Poisson's ratio, water permeability, and viscosity are varied so that their effect on brain oedema formation can be investigated. The results show that the brain Young's modulus and Poisson's ratio play more important role in brain oedema formation compared to the water permeability and viscosity, when varying within certain limits. From these findings, the brain tissue mechanical properties must be optimized so that the model can be used extensively for patient-specific brain oedema progression prediction. IEEE 2019-12 Conference or Workshop Item PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/24567/13/Effects%20of%20brain%20tissue%20mechanical%20and%20fluid1.pdf Mohd Jamil Mohamed, Mokhtarudin and Shabudin, Abbas and Payne, Stephen J. (2019) Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis. In: IEEE-EMBS Conference on Biomedical Engineering And Sciences (IECBES 2018), 3-6 December 2018 , Borneo Convention Centre Kuching, Sarawak, Malaysia. pp. 1-6.. ISBN 978-1-5386-2471-5 https://doi.org/10.1109/IECBES.2018.8626659 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Malaysia Pahang |
building |
UMP Institutional Repository |
collection |
Online Access |
language |
English |
topic |
TJ Mechanical engineering and machinery |
spellingShingle |
TJ Mechanical engineering and machinery Mohd Jamil Mohamed, Mokhtarudin Shabudin, Abbas Payne, Stephen J. Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis |
description |
Reperfusion after ischaemic stroke is risky as it can result in the formation of brain oedema and brain tissue swelling, which subsequently leads to brain herniation. Brain herniation is an undesirable condition that may affect brain functionality and fatality. A mathematical model based on poroelastic model has been previously developed to describe brain oedema formation. In that model, the brain tissue is assumed as a homogeneous isotropic material. In this paper, the effects of the brain mechanical and fluid transport properties on brain oedema progression are investigated by solving the model in a realistic brain geometry using finite element scheme. Four model parameters, namely brain tissue Young's modulus, Poisson's ratio, water permeability, and viscosity are varied so that their effect on brain oedema formation can be investigated. The results show that the brain Young's modulus and Poisson's ratio play more important role in brain oedema formation compared to the water permeability and viscosity, when varying within certain limits. From these findings, the brain tissue mechanical properties must be optimized so that the model can be used extensively for patient-specific brain oedema progression prediction. |
format |
Conference or Workshop Item |
author |
Mohd Jamil Mohamed, Mokhtarudin Shabudin, Abbas Payne, Stephen J. |
author_facet |
Mohd Jamil Mohamed, Mokhtarudin Shabudin, Abbas Payne, Stephen J. |
author_sort |
Mohd Jamil Mohamed, Mokhtarudin |
title |
Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis |
title_short |
Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis |
title_full |
Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis |
title_fullStr |
Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis |
title_full_unstemmed |
Effects of Brain Tissue Mechanical and Fluid Transport Properties during Ischaemic Brain Oedema: A Poroelastic Finite Element Analysis |
title_sort |
effects of brain tissue mechanical and fluid transport properties during ischaemic brain oedema: a poroelastic finite element analysis |
publisher |
IEEE |
publishDate |
2019 |
url |
http://umpir.ump.edu.my/id/eprint/24567/ http://umpir.ump.edu.my/id/eprint/24567/ http://umpir.ump.edu.my/id/eprint/24567/13/Effects%20of%20brain%20tissue%20mechanical%20and%20fluid1.pdf |
first_indexed |
2023-09-18T22:37:15Z |
last_indexed |
2023-09-18T22:37:15Z |
_version_ |
1777416678625247232 |