Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol
A novel polyethylene glycol (PEG) gel was fabricated and used as a carrier to immobilize Clostridium butyricum EB6 to improve biohydrogen (bio-H2) production from palm oil mill effluent (POME). POME is used as a substrate that can act as a carbon source. The resulting PEG-immobilized cells were foun...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier Ltd
2013
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/6251/ http://umpir.ump.edu.my/id/eprint/6251/ http://umpir.ump.edu.my/id/eprint/6251/ http://umpir.ump.edu.my/id/eprint/6251/1/Biohydrogen%20Production%20from%20Palm%20Oil%20Mill%20Effluent%20Using%20Immobilized%20Clostridium%20Butyricum%20EB6%20in%20Polyethylene%20Glycol.pdf |
id |
ump-6251 |
---|---|
recordtype |
eprints |
spelling |
ump-62512018-11-22T06:55:50Z http://umpir.ump.edu.my/id/eprint/6251/ Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol Singh, Lakhveer Zularisam, A. W. Siddique, Md. Nurul Islam Anwar, Ahmad Mohd Hasbi, Ab. Rahim Mimi Sakinah, A. M. Q Science (General) TP Chemical technology TA Engineering (General). Civil engineering (General) A novel polyethylene glycol (PEG) gel was fabricated and used as a carrier to immobilize Clostridium butyricum EB6 to improve biohydrogen (bio-H2) production from palm oil mill effluent (POME). POME is used as a substrate that can act as a carbon source. The resulting PEG-immobilized cells were found to yield 5.35 LH2/L-POME, and the maximum H2 production rate was 510 mL H2/L-POME h (22.7 mmol/L h). The Monod-type kinetic model was used to describe the effect of substrate (POME) concentration on the H2 production rate. The acclimation of immobilized cells greatly improved H2 production. Batch experiments demonstrated that particle size of PEG-immobilized cells for efficient H2 production 3 mm. It is significant that this is the first report on whole-cell immobilization in PEG for H2 production from POME. Elsevier Ltd 2013 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/6251/1/Biohydrogen%20Production%20from%20Palm%20Oil%20Mill%20Effluent%20Using%20Immobilized%20Clostridium%20Butyricum%20EB6%20in%20Polyethylene%20Glycol.pdf Singh, Lakhveer and Zularisam, A. W. and Siddique, Md. Nurul Islam and Anwar, Ahmad and Mohd Hasbi, Ab. Rahim and Mimi Sakinah, A. M. (2013) Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol. Process Biochemistry, 48 (2). pp. 294-298. ISSN 1359-5113 http://dx.doi.org/10.1016/j.procbio.2012.12.007 DOI: 10.1016/j.procbio.2012.12.007 |
repository_type |
Digital Repository |
institution_category |
Local University |
institution |
Universiti Malaysia Pahang |
building |
UMP Institutional Repository |
collection |
Online Access |
language |
English |
topic |
Q Science (General) TP Chemical technology TA Engineering (General). Civil engineering (General) |
spellingShingle |
Q Science (General) TP Chemical technology TA Engineering (General). Civil engineering (General) Singh, Lakhveer Zularisam, A. W. Siddique, Md. Nurul Islam Anwar, Ahmad Mohd Hasbi, Ab. Rahim Mimi Sakinah, A. M. Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol |
description |
A novel polyethylene glycol (PEG) gel was fabricated and used as a carrier to immobilize Clostridium butyricum EB6 to improve biohydrogen (bio-H2) production from palm oil mill effluent (POME). POME is used as a substrate that can act as a carbon source. The resulting PEG-immobilized cells were found to yield 5.35 LH2/L-POME, and the maximum H2 production rate was 510 mL H2/L-POME h (22.7 mmol/L h). The Monod-type kinetic model was used to describe the effect of substrate (POME) concentration on the H2 production rate. The acclimation of immobilized cells greatly improved H2 production. Batch experiments demonstrated that particle size of PEG-immobilized cells for efficient H2 production 3 mm. It is significant that this is the first report on whole-cell immobilization in PEG for H2 production from POME. |
format |
Article |
author |
Singh, Lakhveer Zularisam, A. W. Siddique, Md. Nurul Islam Anwar, Ahmad Mohd Hasbi, Ab. Rahim Mimi Sakinah, A. M. |
author_facet |
Singh, Lakhveer Zularisam, A. W. Siddique, Md. Nurul Islam Anwar, Ahmad Mohd Hasbi, Ab. Rahim Mimi Sakinah, A. M. |
author_sort |
Singh, Lakhveer |
title |
Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol |
title_short |
Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol |
title_full |
Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol |
title_fullStr |
Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol |
title_full_unstemmed |
Biohydrogen Production from Palm Oil Mill Effluent Using Immobilized Clostridium Butyricum EB6 in Polyethylene Glycol |
title_sort |
biohydrogen production from palm oil mill effluent using immobilized clostridium butyricum eb6 in polyethylene glycol |
publisher |
Elsevier Ltd |
publishDate |
2013 |
url |
http://umpir.ump.edu.my/id/eprint/6251/ http://umpir.ump.edu.my/id/eprint/6251/ http://umpir.ump.edu.my/id/eprint/6251/ http://umpir.ump.edu.my/id/eprint/6251/1/Biohydrogen%20Production%20from%20Palm%20Oil%20Mill%20Effluent%20Using%20Immobilized%20Clostridium%20Butyricum%20EB6%20in%20Polyethylene%20Glycol.pdf |
first_indexed |
2023-09-18T22:01:51Z |
last_indexed |
2023-09-18T22:01:51Z |
_version_ |
1777414450767200256 |