Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor

Although the co-digestion of petrochemical wastewater (PWW) with activated manure (AM) is providing an improved production of bio-methane, still several researches are going on how the bio-methane generation and COD removal efficiency can be maximized? Therefore, a question strikes our research moti...

Full description

Bibliographic Details
Main Authors: Siddique, Md. Nurul Islam, Mimi Sakinah, A. M., Zularisam, A. W.
Format: Article
Language:English
English
Published: Elsevier 2015
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/8024/
http://umpir.ump.edu.my/id/eprint/8024/
http://umpir.ump.edu.my/id/eprint/8024/
http://umpir.ump.edu.my/id/eprint/8024/1/1-s2.0-S0959652614013250-main.pdf
http://umpir.ump.edu.my/id/eprint/8024/3/Role%20of%20Biogas%20Recirculation%20In%20Enhancing%20Petrochemical%20Wastewater%20Treatment%20Efficiency%20of%20Continuous%20Stirred%20Tank%20Reactor.pdf
id ump-8024
recordtype eprints
spelling ump-80242018-01-17T02:34:34Z http://umpir.ump.edu.my/id/eprint/8024/ Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor Siddique, Md. Nurul Islam Mimi Sakinah, A. M. Zularisam, A. W. TD Environmental technology. Sanitary engineering Although the co-digestion of petrochemical wastewater (PWW) with activated manure (AM) is providing an improved production of bio-methane, still several researches are going on how the bio-methane generation and COD removal efficiency can be maximized? Therefore, a question strikes our research motivation to find out does biogas recirculation really play a part in enhancing bio-methane generation and COD removal efficiency? This work explains the continuous stirred tank reactor (CSTR) performance with and without biogas recirculation effect for better mixing during the anaerobic co-digestion of PWW and AM. Four distinct rates of biogas recirculation (10.15, 15.81, 24.14 and 36.25 Ld-1) were examined for a trial period of 100 days. Bio-methane generation and COD removal efficiency were greatly improved as the biogas recirculation rate was increased. The newly incorporated CSTR arrangement with biogas recirculation effect achieved COD and VFA removal efficiencies up to 98.5% and 94% with a hydraulic retention time (HRT) of 9 days. The corresponding mean Biogas and methane generation were observed to be remained at 9.2±0.5 and 6.08±0.5 m3 m-3 d-1. It shows a maximum increase of 55% and 26% in biogas and methane generation efficiency compared to that of without biogas recirculation CSTR. Biomass retention efficiency of the CSTR showed an increment of 16.78%, 20% and 25% in biomass level with the gradual increment of biogas recirculation rates of 10.15; 15.81 and 24.14 Ld-1. This work may depict the environmental and financialfeasibility of renewable technology that will open the scope for deeper study in minimizing the environmental issues of petrochemical manufacturing in the future. Elsevier 2015 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/8024/1/1-s2.0-S0959652614013250-main.pdf application/pdf en http://umpir.ump.edu.my/id/eprint/8024/3/Role%20of%20Biogas%20Recirculation%20In%20Enhancing%20Petrochemical%20Wastewater%20Treatment%20Efficiency%20of%20Continuous%20Stirred%20Tank%20Reactor.pdf Siddique, Md. Nurul Islam and Mimi Sakinah, A. M. and Zularisam, A. W. (2015) Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor. Journal of Cleaner Production, 91. pp. 229-234. ISSN 0959-6526 (print), 1879-1786 (online) (In Press) http://dx.doi.org/10.1016/j.jclepro.2014.12.036 10.1016/j.jclepro.2014.12.036.
repository_type Digital Repository
institution_category Local University
institution Universiti Malaysia Pahang
building UMP Institutional Repository
collection Online Access
language English
English
topic TD Environmental technology. Sanitary engineering
spellingShingle TD Environmental technology. Sanitary engineering
Siddique, Md. Nurul Islam
Mimi Sakinah, A. M.
Zularisam, A. W.
Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor
description Although the co-digestion of petrochemical wastewater (PWW) with activated manure (AM) is providing an improved production of bio-methane, still several researches are going on how the bio-methane generation and COD removal efficiency can be maximized? Therefore, a question strikes our research motivation to find out does biogas recirculation really play a part in enhancing bio-methane generation and COD removal efficiency? This work explains the continuous stirred tank reactor (CSTR) performance with and without biogas recirculation effect for better mixing during the anaerobic co-digestion of PWW and AM. Four distinct rates of biogas recirculation (10.15, 15.81, 24.14 and 36.25 Ld-1) were examined for a trial period of 100 days. Bio-methane generation and COD removal efficiency were greatly improved as the biogas recirculation rate was increased. The newly incorporated CSTR arrangement with biogas recirculation effect achieved COD and VFA removal efficiencies up to 98.5% and 94% with a hydraulic retention time (HRT) of 9 days. The corresponding mean Biogas and methane generation were observed to be remained at 9.2±0.5 and 6.08±0.5 m3 m-3 d-1. It shows a maximum increase of 55% and 26% in biogas and methane generation efficiency compared to that of without biogas recirculation CSTR. Biomass retention efficiency of the CSTR showed an increment of 16.78%, 20% and 25% in biomass level with the gradual increment of biogas recirculation rates of 10.15; 15.81 and 24.14 Ld-1. This work may depict the environmental and financialfeasibility of renewable technology that will open the scope for deeper study in minimizing the environmental issues of petrochemical manufacturing in the future.
format Article
author Siddique, Md. Nurul Islam
Mimi Sakinah, A. M.
Zularisam, A. W.
author_facet Siddique, Md. Nurul Islam
Mimi Sakinah, A. M.
Zularisam, A. W.
author_sort Siddique, Md. Nurul Islam
title Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor
title_short Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor
title_full Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor
title_fullStr Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor
title_full_unstemmed Role of Biogas Recirculation in Enhancing Petrochemical Wastewater Treatment Efficiency of Continuous Stirred Tank Reactor
title_sort role of biogas recirculation in enhancing petrochemical wastewater treatment efficiency of continuous stirred tank reactor
publisher Elsevier
publishDate 2015
url http://umpir.ump.edu.my/id/eprint/8024/
http://umpir.ump.edu.my/id/eprint/8024/
http://umpir.ump.edu.my/id/eprint/8024/
http://umpir.ump.edu.my/id/eprint/8024/1/1-s2.0-S0959652614013250-main.pdf
http://umpir.ump.edu.my/id/eprint/8024/3/Role%20of%20Biogas%20Recirculation%20In%20Enhancing%20Petrochemical%20Wastewater%20Treatment%20Efficiency%20of%20Continuous%20Stirred%20Tank%20Reactor.pdf
first_indexed 2023-09-18T22:05:16Z
last_indexed 2023-09-18T22:05:16Z
_version_ 1777414665912975360