Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO

In metabolic network modelling, the accuracy of kinetic parameters has become more important over the last two decades. Even a small perturbation in kinetic parameters may cause major changes in a model’s response. The focus of this study is to identify the kinetic parameters, using two distinct app...

Full description

Bibliographic Details
Main Authors: Azrag, M. A. K., Tuty Asmawaty, Abdul Kadir, Jaber, Aqeel S., Odili, Julius Beneoluchi
Format: Article
Language:English
Published: Scientific Research Publishing 2015
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/9082/
http://umpir.ump.edu.my/id/eprint/9082/
http://umpir.ump.edu.my/id/eprint/9082/
http://umpir.ump.edu.my/id/eprint/9082/1/Large-scale%20kinetic%20parameter%20identification%20of%20metabolic%20network%20model%20of%20E.%20Coli%20using%20PSO.pdf
id ump-9082
recordtype eprints
spelling ump-90822018-04-25T07:00:22Z http://umpir.ump.edu.my/id/eprint/9082/ Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO Azrag, M. A. K. Tuty Asmawaty, Abdul Kadir Jaber, Aqeel S. Odili, Julius Beneoluchi QA76 Computer software In metabolic network modelling, the accuracy of kinetic parameters has become more important over the last two decades. Even a small perturbation in kinetic parameters may cause major changes in a model’s response. The focus of this study is to identify the kinetic parameters, using two distinct approaches: firstly, a One-at-a-Time Sensitivity Measure, performed on 185 kinetic parameters, which represent glycolysis, pentose phosphate, TCA cycle, gluconeogenesis, glycoxylate pathways, and acetate formation. Time profiles for sensitivity indices were calculated for each parameter. Seven kinetic parameters were found to be highly affected in the model response; secondly, particle swarm optimization was applied for kinetic parameter identification of a metabolic network model. The simulation results proved the effectiveness of the proposed method. Scientific Research Publishing 2015 Article PeerReviewed application/pdf en cc_by http://umpir.ump.edu.my/id/eprint/9082/1/Large-scale%20kinetic%20parameter%20identification%20of%20metabolic%20network%20model%20of%20E.%20Coli%20using%20PSO.pdf Azrag, M. A. K. and Tuty Asmawaty, Abdul Kadir and Jaber, Aqeel S. and Odili, Julius Beneoluchi (2015) Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO. Advances in Bioscience and Biotechnology, 6 (2). pp. 120-130. ISSN 2156-8456 (print); 2156-8502 (online) http://dx.doi.org/10.4236/abb.2015.62012 doi: 0.4236/abb.2015.62012
repository_type Digital Repository
institution_category Local University
institution Universiti Malaysia Pahang
building UMP Institutional Repository
collection Online Access
language English
topic QA76 Computer software
spellingShingle QA76 Computer software
Azrag, M. A. K.
Tuty Asmawaty, Abdul Kadir
Jaber, Aqeel S.
Odili, Julius Beneoluchi
Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO
description In metabolic network modelling, the accuracy of kinetic parameters has become more important over the last two decades. Even a small perturbation in kinetic parameters may cause major changes in a model’s response. The focus of this study is to identify the kinetic parameters, using two distinct approaches: firstly, a One-at-a-Time Sensitivity Measure, performed on 185 kinetic parameters, which represent glycolysis, pentose phosphate, TCA cycle, gluconeogenesis, glycoxylate pathways, and acetate formation. Time profiles for sensitivity indices were calculated for each parameter. Seven kinetic parameters were found to be highly affected in the model response; secondly, particle swarm optimization was applied for kinetic parameter identification of a metabolic network model. The simulation results proved the effectiveness of the proposed method.
format Article
author Azrag, M. A. K.
Tuty Asmawaty, Abdul Kadir
Jaber, Aqeel S.
Odili, Julius Beneoluchi
author_facet Azrag, M. A. K.
Tuty Asmawaty, Abdul Kadir
Jaber, Aqeel S.
Odili, Julius Beneoluchi
author_sort Azrag, M. A. K.
title Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO
title_short Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO
title_full Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO
title_fullStr Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO
title_full_unstemmed Large-scale Kinetic Parameter Identification of Metabolic Network Model of E. coli using PSO
title_sort large-scale kinetic parameter identification of metabolic network model of e. coli using pso
publisher Scientific Research Publishing
publishDate 2015
url http://umpir.ump.edu.my/id/eprint/9082/
http://umpir.ump.edu.my/id/eprint/9082/
http://umpir.ump.edu.my/id/eprint/9082/
http://umpir.ump.edu.my/id/eprint/9082/1/Large-scale%20kinetic%20parameter%20identification%20of%20metabolic%20network%20model%20of%20E.%20Coli%20using%20PSO.pdf
first_indexed 2023-09-18T22:07:16Z
last_indexed 2023-09-18T22:07:16Z
_version_ 1777414791689666560