Optimization of CO2 production rate for fire-fighting robot applications using response surface methodology
A carbon dioxide gas-powered pneumatic actuation has been proposed as a suitable power source for an autonomous firefighting robot (CAFFR), which is designed to operate in an indoor fire environment in our earlier study. Considering the consumption rate of the pneumatic motor, the gas-powered act...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English English English |
Published: |
Cogent-OA
2018
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/70024/ http://irep.iium.edu.my/70024/ http://irep.iium.edu.my/70024/ http://irep.iium.edu.my/70024/7/70024%20Optimization%20of%20CO2%20production%20rate%20for%20firefighting%20robot%20applications.pdf http://irep.iium.edu.my/70024/8/70024%20Optimization%20of%20CO2%20production%20rate%20for%20firefighting%20robot%20applications%20SCOPUS.pdf http://irep.iium.edu.my/70024/9/70024%20Optimization%20of%20CO2%20production%20rate%20for%20firefighting%20robot%20applications%20SCOPUS%20-erratum.pdf |
Internet
http://irep.iium.edu.my/70024/http://irep.iium.edu.my/70024/
http://irep.iium.edu.my/70024/
http://irep.iium.edu.my/70024/7/70024%20Optimization%20of%20CO2%20production%20rate%20for%20firefighting%20robot%20applications.pdf
http://irep.iium.edu.my/70024/8/70024%20Optimization%20of%20CO2%20production%20rate%20for%20firefighting%20robot%20applications%20SCOPUS.pdf
http://irep.iium.edu.my/70024/9/70024%20Optimization%20of%20CO2%20production%20rate%20for%20firefighting%20robot%20applications%20SCOPUS%20-erratum.pdf