An oppositional learning prediction operator for simulated kalman filter
Simulated Kalman filter (SKF) is a recent metaheuristic optimization algorithm established in 2015. In the present study, we introduce a prediction operator in SKF to prolong its exploration and to avoid premature convergence. The proposed prediction operator is based on oppositional learning. The r...
| Main Authors: | , , , , , , |
|---|---|
| Format: | Conference or Workshop Item |
| Language: | English English |
| Published: |
2018
|
| Subjects: | |
| Online Access: | http://umpir.ump.edu.my/id/eprint/22171/ http://umpir.ump.edu.my/id/eprint/22171/1/9.%20An%20Oppostional%20Learning%20Prediction%20Operator%20For%20Simulated%20Kalman%20Filter.pdf http://umpir.ump.edu.my/id/eprint/22171/2/9.1%20An%20Oppostional%20Learning%20Prediction%20Operator%20For%20Simulated%20Kalman%20Filter.pdf |
Internet
http://umpir.ump.edu.my/id/eprint/22171/http://umpir.ump.edu.my/id/eprint/22171/1/9.%20An%20Oppostional%20Learning%20Prediction%20Operator%20For%20Simulated%20Kalman%20Filter.pdf
http://umpir.ump.edu.my/id/eprint/22171/2/9.1%20An%20Oppostional%20Learning%20Prediction%20Operator%20For%20Simulated%20Kalman%20Filter.pdf